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Abstract

Persistent homology provides a tool to infer qualitative and quantitative information about
the structure of a data set, in particular the 0-homology classes can be interpreted as a
clustering of the data. A subset of the space of secondary structures of the micro RNA’s is
chosen to applied this topological analysis. This set defines a metric space regarding the
hamming, levenshtein, base pair and tree edit distances. Then, a nested family of Vietoris-
Rips complexes from the data set is built in order to convert the data in a topological
object and persistent homology is applied. In the thesis we found this method of clustering
not to be the best one since it may cluster elements far from each other, making it sus-
ceptible to forming a large dominant cluster. But, it performs better when the base pair
distance is used, thus, this distance constitutes a better choice of metric. Even though it
is not as good as other methods of clustering, it is sensible to small changes of the data
points, it identifies distant points in the set and it reveals a prevalent shape of the data
set.

Keywords: persistent homology, RNA secondary structure, clustering technique.

Resumen

La homoloǵıa persistente constituye una herramienta para inferir información cualitativa
y cuantitativa de la estructura de un conjunto de datos, en particular las 0-clases de
homoloǵıa pueden ser interpretadas como una forma de aglomeración de los datos. Este
análisis topológico es aplicado a un subespacio de las estructuras secundarias de los micro
ARN’s. Este conjunto define un espacio métrico para las distancias de hamming, leven-
shtein, bases pareadas y de edición de árboles. Luego de los datos se construye una familia
anidada de complejos de Vietoris-Rips convirtiéndolo en un objeto topológico y aśı aplicar
la homoloǵıa persistente. En la tesis se encuentra que el método de aglomeración no es el
mejor ya que puede agrupar elementos distantes entre si, haciendo que sea susceptible a la
formación de un agrupamiento grande y dominante, pero trabaja de mejor manera cuando
la distancia de bases pareadas es usada, aśı que esta distancia constituye una mejor opción
de métrica. A pesar que el método no es tan bueno como otros métodos de agrupamiento,
es sensible a pequeños cambios en los datos, identifica puntos distantes en el conjunto y
revela una forma general del conjunto de datos.

Palabras clave: homoloǵıa persistente, estructura secundaria de ARN, técnica de

agrupamiento.
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Background

Topological data analysis (TDA) refers to a collection of methods and tools that enable
researches find and study topological invariants structure in data [1]. The most known
tool is persistent homology [8] which measures topological features of shapes and func-
tions. These tools have been applied to reveal useful information from the data not always
discover by other analysis techniques.

On the other hand, ribonucleic acid (RNA) is an ubiquitous molecule playing an impor-
tant role in various biological process. The secondary structure of RNA is the set of base
pairs that occur when the RNA folds in on itself in a complex three-dimensional shape
due to chemical interactions. The RNA secondary structure comparison is essential for
classification of RNA by similarities, identification of similar functionalities among RNA
and identification of mutations related to mis-functionality.

The first work research in which persistent homology is applied on the space of RNA
secondary structures is from Mamuye and Rucco and collaborators in 2015 [23] clustering
the space of suboptimal structures and analyzing the structure similarity among optimal
structures of family species.
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Objectives

General

Apply the analysis of persistent homology as a method to compare and cluster RNA sec-
ondary structures.

Specifics

• Choose a suitable set of secondary structures in order to define a consistent and
meaningful metric space regarding the selected metrics.

• Interpret the results from the analysis of persistent homology of the secondary
structure space as relevant information to compare and cluster the underlying set of
RNA foldings.

• Determine the advantages and disadvantages of the topological analysis in relation
to the common techniques to compare RNA secondary structures.

viii



State of art

1.1 Topology

1.1.1 Simplicial Complexes

The simplicial complexes are the primary structure to represent topological spaces.

Definition 1.1.1. An abstract simplicial complex A is a finite collection of sets such that
if α ∈ A and β ⊂ α implies β ∈ A.

We call the sets in A simplices and they are finite. The dimension of a simplex α is dim
α = |α| − 1 where |α| is the cardinal of the set α. We define the dimension of the complex
as the maximum dimension of any of its simplices. The simplex α it is called a k-simplex if
its dimension is k. Also the simplex α is maximal if there is not simplex β such that α ⊂ β.

A subsimplex of α is a non-empty subset β ⊆ α, which is proper if β 6= α. Sometimes is
noted as β ≤ α. If besides, dim β+ 1 = dim α, then β is called a face of α. The vertex set
is the union of all simplices, V (A) =

⋃
α∈A α, that is, the set of all elements that lie in at

least one simplex α ∈ A. Finally a subcomplex B of A is an abstract simplicial complex
such that B ⊆ A.

It is important to see that every abstract simplicial complex A of dimension d has a
geometric realization in R2d+1:

1. If k is the number of vertices of A, they are injected in a set of points v0, ..., vk in
R2d+1 such that they are affinely independent, meaning the k vectors vi − v0, for
1 ≤ i ≤ k, are linearly independent. This is possible since if α and β are simplices
in A with n = dim α and m = dim β, the union of the two has size card (α ∪ β) =
card α+ card β− card (α ∩ β) ≤ n + m + 2 ≤ 2d + 2 and the fact that any 2d + 2
or fewer of the points are affinely independent.

2. A point x =
∑k

i=0 λivi with each λi ∈ R, is an affine combination of the vi if∑k
i=0 λi = 1 and is a convex combination if all λi are non negative.

3. A k-simplex is the set of all the convex combinations of k + 1 affinely independent
points σ = {v0, ..., vk} as in 1. .
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The geometric realization of the k-simplex for k = 0, 1, 2, 3 gives the familiar geometric
figures: vertex for 0-simplex, edge for 1-simplex, triangle for 2-simplex, and tetrahedron
for 3-simplex, as shown in Figure 1.1

Figure 1.1: From left to right each figure represents: a vertex, an edge, a triangle, and
a tetrahedron. Note that an edge has two vertices, a triangle has three edges, and a
tetrahedron has four triangles as faces.

A subsimplex of σ is the set of all the convex combinations of a non empty subset of the
vi and its proper if is not the entire set. The boundary of σ, denoted as ∂σ is the union

of all faces, and the interior denoted as
◦
σ is everything else,

◦
σ = σ− ∂σ. A point x ∈ σ is

interior if all its λi coefficients are positive. Since x has unique coefficients λi, it belongs
to the interior of exactly one face.

Note that for a simplex K in a simplicial complex if σ, σ′ ∈ K then σ ∩ σ′ is either empty
or a subsimplex of σ and σ′ and if τ ≤ σ then τ ∈ K. See for example the representations
shown in Figure 1.2. Additionally the underlying space, denoted as |K|, is the union of its
simplices together with the topology inherited from the ambient Euclidean space in which
the simplices live.

a) b) c)

Figure 1.2: a) It is not a simplicial complex since the intersection of the triangle and the
edge is not a subsimplex, b) Is a complex since the intersection of the triangles is indeed
subsimplex of both and c) Is not a simplex because the triangle has a missing edge.

We say two simplices σ and τ are k-connected if there is a sequence of simplices σ, σ1, ..., σn, τ
such that any two consecutive ones share a k-subsimplex, implying that they have at least
k+1 vertices in common. Such a chain is called a k−chain. The complex K is k-connected
if any two simplices in K of dimensionality greater than k are k-connected.

2
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A

B

e1

e2

e3

e4

e5

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

v11

Figure 1.3: A is the realization of the simplicial complex
{{v1}, {v2}, {v3}, {v4}, {v5}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v4}, {v3, v4}, {v4, v5}, {v1, v3, v4}}.
The dimension of A is 2 and A is 0-connected. B is a simplicial complex with dimension
3 and is 2-connected, also is 1-connected.

Simplicial maps

Now, in the most natural way, we define the continuous maps between simplicial complexes.

Let K be a simplicial complex with vertices u0, ..., un. It is known for x ∈ |K|, x =∑n
i=0 λiui with

∑n
i=0 λi = 1 and λi ≥ 0 for all i.

Let φ be a function with φ : V (K) → V (L) such that every simplex {ui1 , ..., uik} in K
map to a simplex {vi1 , ..., vik} in L. Then φ can be extended to a continuous function f

f : |K| → |L|

x 7→
n∑
i=0

λiφ(ui)

Just written as f : K → L.

If the vertex map φ : V (K)→ V (L) is bijective and φ−1 : V (L)→ V (K) is also a vertex
map, then the induced simplicial map f is a homeomorphism or an isomorphism between
K and L.

1.1.2 Convex Set Systems

It is possible that simplicial complexes arise as intersection patterns of collections of sets.
We present two fundamental theorems for convex sets, remind that a set C is convex if
for any x and y in C and all t in the interval [0, 1], the point (1−t)x+ty also belongs to C.
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Theorem 1.1.2. HELLY’S THEOREM. Let F be a finite collection of closed and convex
sets in Rd. Every d+ 1 sets have a non-empty common intersection if and only if they all
have a non-empty common intersection. (For its proof see [7])

Definition 1.1.3. Let F be a finite collection of sets. The nerve of F consist of all
non-empty subcollections whose sets have a non-empty common intersection. We noted
as NrvF

NrvF = {X ⊂ F|
⋂
X 6= ∅}

The nerve of F defines an abstract simplicial complex since satisfies the Definition 1.1.1.

Theorem 1.1.4. NERVE THEOREM. Let F be a finite collection of closed, convex sets
in an Euclidean space. Then the nerve of F and the union of the sets in F have the same
topological properties.

Čech complexes

Now let us consider the special case in which the convex sets are closed geometric balls,
all of the same radius r.

Definition 1.1.5. Let S be a finite set of points in Rd and let Br(x) be the closed ball
with center x and radius r. The Čech complex of S and r is the nerve of this collection of
balls, that is:

Čech(S, r) = {σ ⊆ S|
⋂
x∈σ

Br(x) 6= ∅}

Clearly, a set of balls has a non-empty intersection if and only if their centers lie inside
a common ball of the same radius. An easy consequence of Helly’s Theorem is therefore
that every d+1 points in S are contained in a common ball of radius r iff all points in S are.

The Čech complex was introduced by Eduard Čech1. We show an example of a Čech
complex in the Figure 1.4.

Vietoris-Rips complexes

This complex was first introduced by Leopold Vietoris 2 in 1927. Instead of checking all
subcollections of S as the Čech complex, the Vietoris-Rips complex just check the pairs
and add 2- and higher-dimensional simplices whenever all their edges are in the complex.
This simplification lead us to the following definition:

VR(S, r) = {σ ⊆ S | diamσ ≤ 2r}
1Eduard Čech was a Czech mathematician born in Stračov in 1893 and die in Prague in 1960.
2Leopold Vietoris was an Austrian mathematician. He was born in Radkersburg in 1891 and died in

Innsbruck in 2002.
Eliyahu Rips is an Israeli mathematician born in 1964 in Latvia

4
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Where diamσ is the maximum distance between the points on σ.

a b
c

d

e

f

g

h

i

Figure 1.4: Vietoris-Rips complex of nine points with pairwise intersections among the
disks indicated by straight white edges connecting their centers. As maximal simplices it
has {a, f}, {a, b, h}, {g, e}, {b, d, h}, {d, e, i} and {b, c, d, e}. Notice that Čech(S, r) has the
same maximal simplices except for {a, b, h}, instead, it has {a, h} and {b, h} as maximal
components.

Note that the previous definitions can be generalized to a finite metric space if we set
that for σ subset of S, σ ∈ Čech(S, r) if d(i, j) ≤ 2r for all i, j ∈ σ and σ ∈ VR(S, r) if
diamσ ≤ 2r.

Clearly, Čech(S, r) ⊆ VR(S, r), because the latter contains every simplex warranted by the
given edges, as shown in Figure 1.4. Also it is true that VR(S, r) ⊆ Čech(S,

√
2r). Then

VR(S, r) ⊆ Čech(S,
√

2r) ⊆ VR(S,
√

2r) (1.1.1)

1.1.3 Homology

“Homology is a mathematical formalism for talking in a quantitative and unambiguous
manner about how a space is connected. Compared to most other, competing formalisms,
homology has faster algorithms but captures less of the topological information, however
is not necessarily a drawback”. [7]

Chain Complexes

Definition 1.1.6. Let K be a simplicial complex and p a dimension. c is called a p-chain
of K if c =

∑
i aiσi where σi are p-simplices in k and ai the coefficients.

The coefficients can be integers, rational or even real numbers, but is enough for us to
consider them in Z2. For now on, unless stated otherwise, the coefficients are always in Z2.
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We sum the p-chains componentwise. Specifically, if c =
∑

i aiσi and c′ =
∑

i biσi then
c+ c′ =

∑
i(ai + bi)σi. The set of p-chains together with the addition operation form the

abelian group of p-chains denoted as Cp(K) or just Cp. At the same time the p-chains
form a vectorial space over Z2. For p less than zero and greater than the dimension of K
the group is trivial, consisting only with the zero.

Let σ = [v0, ..., vp] be the simplex spanned by the listed vertices and let τ = [v0, ..., v̂i, ..., vp]
be the simplex generated but all except for vi. Clearly τ ≤ σ.

Definition 1.1.7. The boundary of a p-simplex, noted by ∂pσ is the sum of its faces:

∂pσ =

p∑
i=0

[v0, ..., v̂i, ..., vp]

Hence ∂p defines a function from Cp to Cp−1. Moreover, is a linear map since ∂p(λc) = λ∂p(c)
for λ = 0, 1 and ∂p(c+ c′) = ∂pc+ ∂pc

′. Therefore ∂p is refer as the boundary map.

Definition 1.1.8. The chain complex is the sequence of chain groups connected by
boundary maps

...
∂p+2−−−→ Cp+1

∂p+1−−−→ Cp
∂p−→ Cp−1

∂p−1−−−→ ...

The chain complex is noted as (C, ∂) where C and ∂ are the collections of Ci and ∂i
respectively.

Cycles and boundaries

The linear transformation ∂p establishes two well known subgroups, the kernel K(∂p) and
the image Im(∂p). If c ∈ K(∂p) is going to be called a p-cycle. Also the group of p-cycles
is noted as Zp. On the other hand a p-boundary is an element of Im(∂p+1) and the group
of p-boundaries is noted as Bp.

Example 1.1.9. Let τ = [a, b, c] be the triangle abc as shown in Figure 1.5 and now ∂2(τ)
is calculated.

∂2(τ) = [b, c] + [a, c] + [a, b]

And now let us calculate ∂1(∂2(τ))

∂1(∂2(τ)) = ∂1([b, c]) + ∂1([a, c]) + ∂1([a, b])

= c+ b+ c+ a+ b+ a

= 2c+ 2b+ 2a

= 0
a b

c

Figure 1.5: 2-simplex [a, b, c]
Remembering that coefficients are in Z2 .

6
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Is not an accident that ∂1(∂2(τ)) = 0, it is true for all simplices and the result is shown in
the next lemma.

Lemma 1.1.10. FUNDAMENTAL LEMMA OF HOMOLOGY. ∂p−1(∂p(c)) = 0 for every
non negative integer p and every p-chain c.

Proof. It is enough if it is true for every p-simplex τ . Let τ = [v0, ..., vp]

∂p−1(∂p(τ)) = ∂p−1(

p∑
i=0

[v0, ..., v̂i, ..., vp])

=

p∑
i=0

∂p−1([v0, ..., v̂i, ..., vp])

=

p∑
i=0

p∑
j=0,j 6=i

[v0, ..., v̂j , ..., v̂i, ..., vp]

=

p∑
i=1,j<i

2[v0, ..., v̂j , ..., v̂i, ..., vp]

= 0

It follows that every p-boundary is also a p-cycle or, equivalently, that Bp ⊆ Zp. Figure
1.6 illustrates the subgroup relations among the three types of groups and their connection
across dimensions established by the boundary homomorphisms.

∂p+2

Cp−1

Zp−1

Bp−1

0

∂p−1

Cp

Zp

Bp

0

∂p

Cp+1

Zp+1

Bp+1

0

∂p+1

Figure 1.6: The chain complex consisting of a linear sequence of chain, cycle and boundary
groups connected by homomorphisms.

Homology groups

Definition 1.1.11. The p-th homology group Hp is the p-th group modulo the p-th bound-
ary group, Hp = Zp/Bp. The p-th Betti3 number βp is the rank of Hp.

3Enrico Betti Glaoui was an Italian mathematician born in Pistoia in 1823 and die in Soiana in 1892
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We call each coset of Hp a homology class. Any two cycles c and c′ in the same homology
class are called homologous, which is denoted as c ∼ c′. Hp is indeed a group, and
because Zp is abelian, so is Hp. For example in Figure 1.3 the 1-cycles e1 + e2 + e3 and
e1+e2+e4+e5 are homologous since its sum its equal to e3+e4+e5 which is a 2-boundary.

The cardinality of a group is called its order. Since the coefficients are modulo 2, a
group with n generators has order 2n, furthermore is isomorphic to Zn2 . The dimension
is referred to the rank of the vector space, n = rank Zn2 . The number of cycles in each
homology class is the order of Hp; hence the number of classes in the homology group is
ordHp = ordZp/ordBp, equivalently βp = rankZp − rankBp.

Example 1.1.12. Consider K = {[a, b, c], [b, d], [c, d]} as shown in the figure below.

First, since Ci = 0 for i > 2, thenHi = 0 for i > 2.

Now the chain to be considered is:

0
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

Clearly B2 = 0 and Z0 = C0
∼= Z4

2.

Second, using the example 1.5 is found that

∂2(C2) = {u([b, c] + [a, c] + [a, b]) | u = 0, 1}

Thus Z2 = 0 and B1
∼= Z2.

a b

c d

Third, let c = u1[a, b] +u2[b, c] +u3[a, c] +u4[b, d] +u5[c, d] be an arbitrary chain from C1,
then

∂1(c) = u1(a+ b) + u2(b+ c) + u3(a+ c) + u4(b+ d) + u5(c+ d)

= (u1 + u3)a+ (u1 + u2 + u4)b+ (u2 + u3 + u5)c+ (u4 + u5)d

If c ∈ Z1, therefore u1 + u3 = 0 or equivalently u3 = u1. In the same way, u5 = u4
and u2 = u1 + u4 implying c = u1([a, b] + [a, c] + [b, c]) + u4([b, d] + [c, d] + [b, c]) taking
u1, u4 in Z2. Therefore Z1

∼= Z2
2. In addition, the chains in B0 are of the form u1a+u2b+

u3c+ (u1 + u2 + u3)d, in this way B0
∼= Z3

2.

Consequently, H2
∼= 0/0 ∼= 0, H1

∼= Z2
2/Z2

∼= Z2 and H0
∼= Z4

2/Z3
2
∼= Z2.

Intuitively, the cycles that are boundaries of higher-dimensional subcomplex from the
set of all p-cycles are removed, so that the ones that remain carry information about
the p-dimensional holes of the complex. In simplest terms βp counts the number of p-
dimensional holes in a simplicial complex. There is an intuitive depiction of the first three
Betti numbers, for β0, a theorem is given in [11] by John B. Fraleigh :

8
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Theorem 1.1.13. Let K be a simplicial complex, then β0(K) is equal to the number of
0-connected components of K.

Proof. First, a path between two vertices u and w is a sequence of edges ei = {vi1, vi2}
with i = 1, 2, ...n such that e11 = u, en2 = w and ei2 = e(i+1)1. This path is noted as
u, v21, ...vn1, w or simply u, v2, ...vn, w. Clearly, K is 0-connected if any two vertices can
be joined by a path.

Now, C0(K) is composed by chains of the form
∑

i aivi where vi are the vertices of K.
Fix a vertex u, then for any vertex w in the same connected component there is a path

u, v2, ...vn, w

Then
w = u+ (u+ v2) + (v2 + v3) + ...+ (vn−1 + vn) + (vn + w)

showing that w ∈ u+B0(K) since ∂1({vi, vj}) = vi + vj .

It is easy to see that if w is not in the same connected component as u, then w /∈ u+B0(K).
Otherwise there are n edges such that

w = u+ (v11 + v12) + ...(vn1 + vn2) (1.1.2)

With out losing generality, v11 = u in order to eliminate u, if v12 = w then u and w are in
the same connected component, thus v12 6= w. By induction vi2 = v(i+1)1, if v(i+1)2 = w
then there is a path between u and w implying they are in the same component, but then,
there is not vij = w, contradicting 1.1.2.

Thus each coset of H0(K) represents exactly one and only one connected component
proving the assertion.

Due to an Alexander4 duality property [15] for H1, the non-bounding 1-cycle represents a
collection of non-contractible closed curves in K, or a set of tunnels formed by K. So, β1
represents the dimension of the basis for the tunnels. The non-bounding 2-cycle represents
the set of non-contractible closed surfaces in K, or a set of voids. The dimension of the
basis for voids is represented by β2.

Induced homomorphisms

Let K and L be simplicial complexes and f a continuous function from K to L, then f
naturally gives rise to a homomorphism fp of Cp(K) into Cp(L) which has the important
property that commutes with ∂p, meaning that

∂pfp = fp−1∂p

And implies that f defines a homomorphism f̂ between Hp(K) and Hp(L) for each
dimension p, which is consequence of the next theorem.

4James Waddell Alexander II is a mathematician born in Sea Bright in 1888 an die in Princeton in 1971
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Theorem 1.1.14. Let (C, ∂) and (D, ∂′) be chain complexes and suppose there is a
collection f of homomorphisms fp : Cp → Dp such that ∂′pfp = fp−1∂p

. . .
∂p+2

Cp+1

fp+1

∂p+1

Cp

fp

∂p

Cp−1

fp−1

∂p−1
. . .

. . .
∂′p+2

Dp+1

∂′p+1

Dp

∂′p
Dp−1

∂′p−1
. . .

Then fk induces a natural homomorphism f̂k : Hk(C)→ Hk(D).

Proof. Let z ∈ Zk(C). Now

∂′p(fp(z)) = fp−1(∂p(z)) = ∂p(0) = 0

so fp(z) ∈ Zp(D). Let’s define f̂

f̂k : Hk(C)→ Hk(D) (1.1.3)

z +Bk(C) 7→ fk(z) +Bk(D)

Take z1 ∈ z + Bk(C), then z1 − z ∈ Bk(C), so there exists c ∈ Cp+1 such that Z1 − z =
∂p+1(c). But then

fp(z1)− fp(z) = fp(z1 − z) = fp(∂p+1(c)) = ∂′p+1(fp+1(c))

Hence fk(z1) ∈ fk(z) +Bk(C) and in this way f̂k 1.1.3 is well defined since is independent
from the choice of the representative.

As fk is a homomorphism between Zk(C) and Zk(D) then f̂k is a homomorphism of Hk(C)
into Hk(D).

1.1.4 Persistent Homology

“The concept of persistence emerged independently in the work of Frosini, Ferri, and
collaborators in Bologna, Italy, in the doctoral work of Robins at Boulder, Colorado, and
within the biogeometry project of Edelsbrunner at Duke, North Carolina.” [8]

Filtrations

Definition 1.1.15. A filtration of a complex K is a nested sequence of subcomplexes,

∅ = K0 ⊂ K1 ⊂ K2 ⊂ ... ⊂ Km = K

10
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A complex K with a filtration is called a filtered complex.

Before continuing, notice for a finite set of points S in Rd and a sequence of real numbers
r0, ..., rn with r0 = 0 and rn = diam(S), VR(S, ri) defines a filtration:

∅ ⊂ VR(S, r0) ⊂ VR(S, r1) ⊂ ... ⊂ VR(S, rn)

Similarly there is a filtration for Čech(S, ri). For example in Figure 1.7 is shown a sequence
of Vietoris Rips complexes for a set S ⊂ R2 sampled from an annulus.

Figure 1.7: A sequence of Vietoris-Rips complexes for a point cloud data set S sampled
from an annulus.

Let Cip, Z
i
p and Bi

p represent the p-th chain group, the p-th cycle group and the p-boundary
group, respectively, of the i-th complex Ki in the filtration sequence.

11



CONTENTS

For every i ≤ j there is an inclusion map f i,j from Ki to Kj . Using the result from

the Theorem 1.1.14 f i,j gives rise to a homomorphism f i,jp : Hp(Ki) → Hp(Kj) for each
dimension p. The filtration thus corresponds to a sequence of homology groups connected
by homomorphisms,

0 = Hp(K0)
f0,1p−−→ Hp(K1) −→ ... −→ Hp(Kn−1)

fn−1,n
p−−−−→ Hp(Kn) = Hp(K)

again one for each dimension p. May in Ki there are homology classes that are not in
Ki−1 or some classes in Ki−1 become trivial or merge with others in Ki. The classes that
are born at or before a given threshold and die after another threshold are collected in
groups.

Definition 1.1.16. The p-th persistent homology groups are the images of the homomor-
phisms induced by inclusion, H i,j

p = Im f i,jp , for 0 ≤ i ≤ j ≤ n. The corresponding p-th
persistent Betti numbers are the ranks of these groups, βi,jp = rankH i,j

p .

Lemma 1.1.17. Let f i,jp be defined as before. Then Im f i,jp ∼= Zip/(B
j
p ∩ Zip)

Proof. Let’s define

F : Zip → Im(f i,jp )

z 7→ f i,jp ([z]) = z +Bj
p

F is clearly surjective and ker(F ) = {z ∈ Zip|z+Bj
p = Bj

p} = {z ∈ Zip|z ∈ Bj
p} = Zip ∩Bj

p.

Thus , by the fundamental homomorphism theorem Im f i,jp ∼= Zip/(B
j
p ∩ Zip)

Hence βi,jp counts homological classes in the complex Kj which were created during
filtration in the complex Ki or earlier. Let [z] be a class in Hp(Ki), it borns at Ki if

[z] /∈ H i−1,i
p . Furthermore, if [z] is born at Ki , then it dies entering Kj if it merges with

an older class from Kj−1, that is f i,j−1p ([z]) /∈ H i−1,j−1
p but f i,jp ([z]) ∈ H i−1,j

p .

Hp(Kj)

Hi−1,j
p

0

Hp(Kj−1)

Hi−1,j−1
p

0

Hp(Ki)

[z]

Hi−1,i
p

0

Hp(Ki−1)

0

Figure 1.8: Representation of a class [z] that is born at Ki and dies in Kj

To get a more intuitive illustration of persistence concept, the following ideas are shown
in [18]: let z be a non-bounding p-cycle created in Ki as a consequence of the appear-
ance of the simplex σ in the complex. The simplex σ is labeled as a creator simplex, or

12
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σ+, (positive simplex ). Consider the appearance of another simplex τ in Kj with j ≥ i
which turns a cycle z′ in [z] into a boundary, so that z′ ∈ Bp. This causes the decrease
of the rank of the homology group since the class [z] is joined with the older class of
cycles. The simplex τ is labeled as an annihilator simplex, τ−, (negative simplex ) since it
annihilates [z].

If [z] is born at Ki and dies at Kj it is said that [z] is born at time (step) i and dies
at time (step) j. The index persistence of [z] is defined as j − i. If [z] never dies its
index persistence is set to infinity. If j − i is large (long enough), [z] can be considered
as pertinent information about homology groups and Betti numbers. Meanwhile for short
j − i are possibly topological noise.

Persistence diagrams
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1
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3

0.
4

0.
5

0.
6

Birth

D
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th

● H0 classes
H1 classes

(0.1,0.2)

Figure 1.9: Persistence diagram of the set of points S. The 5 black points in the shaded
region correspond to β0.10,0.150 , meanwhile β0.10,0.151 = 0, since there are not triangles in
the shaded region.

Let µi,jp be the number of independent p-dimensional classes that are born at Ki and die
entering Kj , then

µi,jp = (βi,j−1p − βi,jp )− (βi−1,j−1p − βi−1,jp ) (1.1.4)

for all i < j and all p. Indeed, the first difference on the right side counts the classes
that are born at or before Ki and die entering Kj , while the second difference counts the
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classes that are born at or before Ki−1 and die entering Kj .

The p-persistence diagram of the filtration, denoted as Dgmp(f) is made drawing each

point (i, j) with multiplicity µi,jp . It represents a class whose index persistence is the
vertical distance to the diagonal. Since the multiplicities are defined only for i < j, all
points lie above the diagonal. For instance Figure 1.9 is a 0-persistence diagram and
1-persistence diagram combined of the sampling of points in an annulus from Figure 1.7.
It is easy to read off the persistent Betti numbers. Specifically, βk,lp is the number of points
in the upper left quadrant with corner point (k, l). A class that is born at Ki and dies
entering Kj is counted iff i ≤ k and j > l. The quadrant is therefore closed along its
vertical right side and open along its horizontal lower side.

Lemma 1.1.18. FUNDAMENTAL LEMMA OF PERSISTENT HOMOLOGY Let ∅ =
K0 ⊂ K1 ⊂ K2 ⊂ ... ⊂ Km = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤ n
and every dimension p, the p-th persistent Betti number is βk,lp =

∑
i≥k
∑

j>l µ
i,j
p

This is an important property since makes the diagram to encode all information about
persistent homology groups.

Barcodes

There is other graphical way to represent persistent homology. Since persistent homology
detects the birth and death of each topological feature as the complex evolves in time
(step), this inspires a visual snapshot of Hp in the form of a barcode.

A barcode represents Hp as a collection of horizontal line segments in a plane whose
horizontal axis corresponds to the parameter (time) and whose vertical axis represents an
arbitrary ordering of p-cycles that are homology generators. If l is the segment represent-
ing the cycle σ, l is in the height of σ and l starts at i and finish at j if σ is born at time
i and dies at time j. The Figure 1.10 gives an example of the barcode representation of
the 0-homology and 1-homology of the sampled points in Figure 1.7.

Clearly, the barcodes do not provide information on the delicate structure of the homol-
ogy, however, βi,jp is equal to the number of intervals in the barcode of Hp spanning the
parameter interval [i, j] and has the ability to filter out topological noise and capture sig-
nificant features. Indeed, in Figure 1.10 the point cloud likely represents one connected
object with one significant 1-hole, as expected, since S was sampled from an annulus.

1.1.5 Computation

Let S be a finite set of points from a metric space. From a computational point of view,
the Rips complex of S for any r is less expensive that the corresponding Čech complex,
even though the Vietoris Rips complex has in general more simplices. The reason of that is
the Rips complex is completely determined by the skeleton of its edges and can be stored
as a graph and reconstituted instead of storing the entire complex.
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0.0 0.1 0.2 0.3 0.4 0.5
time

H0

H1

Figure 1.10: Barcode diagram of the set of points S

Nevertheless, this virtue is not without cost. While the Čech complex behaves exactly
like its underlying set (see Nerve theorem, 1.1.4), the Rips complex does not necessarily.
However, using the equation 1.1.1 it is clear that any topological feature that persists
from VR(S, r) to VR(S,

√
2r) is in fact a topological feature of Čech(S

√
2r), thus a fil-

tration of Vietoris-Rips complexes reveals the topological information given by the Čech
complexes.[12]

Matrix reduction

On the other hand, we can compute persistence efficiently in just one matrix reduction.

First, let {Ki} be a filtration of K such that Ki −Ki−1 = σi where σi is a simplex. Then

15



CONTENTS

there is a natural total order over the simplices of K: σ0, ..., σm.

Second, define the matrix ∂ ∈Mm[Z2] as:

∂[i, j] =

{
1 if σi ≤ σj and dim(σi) = dim(σj)− 1
0 otherwise

In simple terms, ∂[i, j] = 1 if σi is a face of σj .

Subsequently, the matrix ∂ is reduced to a matrix R using the algorithm shown below.

Let low(i) be the index of the row with the lowest 1 of a non-zero column Ri. Then

R = ∂
for j = 1 to m do

while there exists j0 < j with low(j0) = low(j) do
add Rj0 to Rj

done
done

As summing columns is a matrix operation is equivalent to multiply ∂ by an upper
triangular matrix V such that V [i, i] = 1, V [i, j] = 1 if Ri was added to Rj and the
other entries of V are 0. Thus Rj stores the boundary of the chain in Vj . Keep in mind
that R is still a 0-1 matrix because the coefficients are in Z2. R is called reduced if whenever
Ri and Rj are non-zero columns, low(i) 6= low(j).

Note that the matrix associated to the linear map ∂p is a submatrix of ∂ taking the
columns that corresponds to p-simplices and the rows that correspond to p− 1-simplices.
Then, the number of zero columns that correspond to p-simplices is the rank of Zp and
the number of non-zero columns of p-simplices gives the rank of Bp−1.

Example 1.1.19. Consider again the complex K = {[a, b, c], [b, d], [c, d]} from the Exam-
ple 1.1.12.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

R

=

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

∂

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

V

Figure 1.11: Reducing the matrix ∂ of K. The ligth blue squared mark the ones and the
gray squares mark the lowest 1’s in R
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Define an order of the simplices:

∅, [a], [b], [c], [d], [a, b], [b, c], [a, c], [b, d], [c, d], [a, b, c]

and make ∂ and R
Remember that

βp = rankZp − rankBp

In this way, R gives the following information: rank Z0 = 4, rank B0 = 3, rank Z1 = 2,
rank B1 = 1, rank Z2 = 0 and rank B2 = 0. Thus, by definition β0 = 4 − 3 = 1,
β1 = 2− 1 = 1, β2 = 0− 0 = 0 and βi = 0 for i > 2 agreeing with what was known before.

That is not all, the matrix R also gives information about persistent homology. But first
we present a lemma in order to achieve this information.

i, j

i+ 1, ji+ 1, j − 1

i, j − 1

Lemma 1.1.20. Let R and R′ be reduced matrices from
∂. Then lowR(j) = lowR′(j) for all j = 1, 2, ...,m

Proof. Consider the lower left submatrix Rji of R whose

corner element is R[i, j]. In other words, Rji is obtained
from R by removing the first i− 1 rows and the last n− j
columns. Since left-to-right column operations preserve
the rank of every such submatrix, the rank of Rji is the
same as that of the corresponding submatrix of ∂. Define

rR(i, j) = rankRji − rankRji+1 + rankRj−1i+1 − rankRj−1i (1.1.5)

Clearly rR(i, j) = rR′(i, j) = r∂(i, j). Also the rank of Rji is equal to its number of non-
zero columns.

Now, if R[i, j] is a lowest 1, then Rji has one more non-zero column than Rji+1 and

rankRj−1i+1 = rankRj−1i , implying rR(i, j) = 1. If R[i, j] is not a lowest 1, then are
two subcases.

• If none of the columns from 1 to j−1 has its lowest 1 in row i, then rankRji+1 = rankRji
and so do Rj−1i+1 and Rj−1i

• If one of the columns from 1 to j− 1 has its lowest 1 in row i, then Rji has one more

non-zero column than Rji+1 and Rj−1i has one more non-zero column than Rj−1i+1 .

In eiher case rR(i, j) = 0.

Since the ranks of the lower left submatrices of R are the same as those of R′, we have a
characterization of the lowest 1s that does not depend on the reduction process.
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Corollary 1.1.21. For r∂(i, j) defined in 1.1.5, i = low(j) iff r∂(i, j) = 1.

Now, knowing that the lowest 1’s are not an artifact of the particular strategy used for
reduction it is presented its meaning. Let σj be a p-simplex and consider the column j in
R.

• If Rj is zero then the rank of Zp increase by one implying βp increase by one too.
Thus σj is positive since its addition creates gives birth to a new p-homology class.

• If Rj is non-zero, then the rank of Bp−1 increase by one and makes that βp−1 decrease
by one. Thus σj is negative because its addition gives death to a (p− 1)-homology
class.

Furthermore, it is claimed the class that dies by the addition of σj is born with the
addition of σi where i = low(j). In first place, if Rj is non-zero, by construction, stores
the boundary of σj . Second, as σj is negative implies that the dying cycle d becomes a
boundary, indeed the boundary of σj . Therefore,

σk is part of the representative cycle d if and only if ∂[k, j] = 1 (1.1.6)

Thus the class did not exist before the addition of σi. Suppose the class is born with the
addition of σi′ with i′ > i. Using equation 1.1.6 , σi′ is not part of d, otherwise ∂[i′, j] = 1
but contradicts i = low(j). Thus, there is a cycle d′ 6= d such that σi′ is part of it and d
and d′ are homologous. This is possible if and only if there is a p-simplex σ′j at Ki such
that σi′ is part of the boundary of σ′j , but σ′j can not be added before σi′ since {Ki} is a
filtration, again is a contradiction. In this manner, the assertion is true.

We use the Figure 1.11 to show how this idea works. Adding 1 gives birth to a new 0-cycle,
since row 1 does not contain a lowest one implies the homology class never dies. The first
lowest one is in row 2 and column 5. In simple terms, the vertex 2 gives birth to the
0-cycle that the edge 5 kills. Similarly, the vertex 3 gives birth to the 0-cycle that the edge
6 kills and the vertex 4 gives birth to the 0-cycle that the edge 8 kills. Adding the edge 7
does not kill anything, it rather gives birth to a 1-cycle corresponding to the sum of 5, 6
and 7 as shown in V7. In the same way, the edge 9 gives birth to a 1-cycle corresponding
to the sum of 5, 7, 8 and 9 . Meanwhile the surface 10 kills the 1-cycle created by the
addition of 7 , the last 1-cycle never dies, thus, it persists over time.
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1.2 Application of persistent homology

The primary application of persistent homology is in data analysis, an activity that reaches
into every discipline in science and engineering. Our data are the RNA secondary struc-
tures and our purpose in this work is revealing similarity information hidden in the RNA
secondary structure space trough the application of persistent homology.

This application is inspired in the conference paper “Persistent Homology on RNA Sec-
ondary Structure Space” of 2015 [23] were the space of 5s rRNA foldings is clustered using
the information of the 0-homological classes that represents the connected components of
the data. Nevertheless, our work uses a larger data set and more distances to compare
the structures. The preliminaries of the data set are presented next.

1.2.1 RNA secondary structures

Ribonucleic acid (RNA) is a molecule ubiquitous in the cell and important in various
biological process as coding, decoding, regulation and expression of the genes. A RNA
molecule consists of a chain of ribonucleotides linked together by covalent chemical bonds.
All nucleotide contains one of the four bases: adenine (A), cytosine (C), guanine (G) or
uracil (U). This linear string is called its primary structure. The number of ribonucleotides
is called the length of the molecule.

Each nucleotide of the backbone can form a base pair following the symmetric Watson-
Crick rules A-U, G-C and Wobble rule U-G. These interactions forced the molecule to fold
in on itself and form a complex, three-dimensional shape called the RNA tertiary structure .

In order to simplify the study, the biologist just focus their attention on the base pairs
involved. This collection of base pairs is referred to as its secondary structure. Predicting
secondary structure first and then proceeding on to tertiary structure has been a fruitful,
if not infallible approach.

Before continuing, a formally definition of the secondary structure is given.

Let Sn be the space of all possible secondary structures of a RNA sequence of length n.

Definition 1.2.1. Given S ∈ Sn, the bases are numbered form 1 (called the 5’ terminus)
to n (the 3’ terminus). A secondary structure S is a graph whose vertices V (S) are the
nucleotides of the RNA and the edges E(S) are base pairs, such that if {i, j} and {p, q}
are in E(S) then

i) j − i > 3

ii) i = p if and only if j = q

iii) p ≤ j implies that i < p < q < j or p < q < i < j
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An edge {i, j} of S is noted as i.j when i < j. Those vertices not contained in a base
pair are called unpaired. Condition ii) implies that each vertex (i.e., nucleotide) is allowed
to belong to at most one base pair and condition (iii) excludes the formation of what are
called pseudoknots. The first condition is going to be explained few paragraphs later.

Due to the last conditions, the secondary structure can be decomposed into well defined
substructures such that each base is contained in just on of them.

Suppose i.j ∈ S are paired in S and i < r < j and there is not a pair s.t such that
i < s < r < t < j, then i is accesible from i.j. If p.q ∈ S such that p and q are accessible
from i.j, then the pair p.q is accessible from i.j. The k − 1 pairs and u unpaired terms
accessible from i.j constitute the k-cycle (also k-loop) closed by i.j. Those sequence terms
contained in no k-cycle are called external. [40]

The k-loops defined by the pair i.j are classified in this form:

k = 1: Forms a hairpin loop. Note that condition i) from definition 1.2.1 implies that
u ≥ 3.

k = 2:

• If u = 0 is called a stack.

• If u > 0 and either i+ 1 or j − 1 is paired but no both is called a bulge.

• If u > 0 and neither i+ 1 or j − 1 is paired is called an interior loop.

k > 2: This loops are called a multiple loop, multi-branched loop or multiloop

Each of these substructures is called a motif. For illustration see the Figure 1.12.

1.2.2 Representation of secondary structures

There are many ways to represent a secondary structure S, however, two representations
are of interest for this work.

Bracket Representation This compact representation was introduced in 1994 by
Hofacker and colaborators [17]. For each element i ∈ S, if i is unpaired is replaced
by a dot ”.” in the i-th position, if is not, the pair i.j is replaced by ”(” and ”)” i-th and
j-th positions, respectively. For instance there is the Figure 1.12 b).

Tree Representation: The tree representation was first described by Hofacker and col-
laborators [17] in 1994. This representation describes the secondary structure using a root
labeled ordered tree. A tree T is called a labeled tree if each node is assigned a symbol from
a fixed finite alphabet and is called a ordered tree if a left-to-right order among siblings in
T is given. For illustration see the Figure 1.12 c). The root does not correspond to a part
of the RNA secondary structure and for each unpaired nucleotide i corresponds a vertex
whose label is l(i) and each pair i.j corresponds a vertex whose label is l(i, j) . The three
is constructed using the following rules:
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S: Stack
H:Hairpin

I: Unternal loop

B: Bulge

M: Multiloop

M

H

S

H

B

I

((((((.((((.......))))((..((....))..))..))..))))

10 20 30 40

a)

b)

c)

Figure 1.12: RNA secondary structure a) Structure with characteristic motifs , b) Tree
representation, c) Bracket representation

i) l(i) and l(i, j) are children of the root if they are external.

ii) l(i) is child of l(p, q) if i is accessible from p.q.

iii) l(i, j) is child of l(p, q) if i.j is accessible from p.q

In this way internal nodes correspond to base pairs, and leaves correspond to unpaired
vertices. Notice that is really important the condition ii) from the definition 1.2.1 that
avoid the formation of pseudoknots.

Also the siblings are ordered following the next rules:

i) l(i) < l(j) if i < j

ii) l(i) < l(j, k) if i < j

iii) l(j, k) < l(i) if k < i
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1.2.3 Distances between secondary structures

The computer scientists have been developed different methods in order to find the op-
timal secondary structure for a given RNA sequences [5], [24],[37], [39]. In general these
methods are based on loop dependent energy rules where each motif has an associated
energy determined experimentally and theoretically and the energy of the structure is the
sum all over its motifs.

Besides, it is not hard to see that the cardinality of Sn grows extremely rapidly with n,
in fact if T (n) is the number of structures that can be formed with n nucleotides [40]

T (n) ∼
(

15 + 7
√

5

8π
n
−3
2

(
3 +
√

5

2

)n) 1
2

Thus, even if the optimal folding is computed it does not mean that only one structure
exists, it just represents the best one that fits certain parameters and may not adequately
describes a real situation for two major reasons. First, the energy parameters on which the
folding algorithm relies are inevitably imprecise and second the folding not only rely on the
base pairs it also depends on external factors of the RNA or potential tertiary interactions
that are not considered. Hence, it is necessary to considered alternative folding that are
called suboptimal structures; structures that does not necessarily fits all the requirements;
and are fundamental to compare these heterogeneous structures.

On the other hand, “RNA secondary structure comparison is essential for (i) identifica-
tion of highly conserved structures during evolution (which cannot always be detected in
the primary sequence, since it is often unpreserved) which suggest a significant common
function for the studied RNA molecules, for instance the families form the Rfam [26], for
(ii) RNA classification of various species (phylogeny) , describe in Evolutionary genomics
and systems biology [32], (iii) identification of a consensus structure and consequently of
a common role for molecules developed in [34] ” [4] and (iv) to identify non conservative
mutations that produces malfunction of the RNA in different biological processes, for ex-
ample the polymorphic miRNA targeting in the coronary artery disease [2].

For those and more reasons , distances have been defined on the space of secondary structures.

Base pair distance

One of the simplest metrics that one can define on Sn was described by Zuker in 1989
[38]. The distance between a pair S1, S2 in Sn equal to the cardinality of the symmetric
difference of E(S1) and E(S2). However, it does not capture much of the secondary struc-
ture information and in general is better to be used to compare sequences of same length.

Using the bracket notation are defined two metrics:
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1.2. APPLICATION OF PERSISTENT HOMOLOGY

Hamming distance

The Hamming distance was introduced by Richard Hamming5 in 1950 [14] to measure the
minimum number of substitutions in order to change one string to another. Formally

Definition 1.2.2. Let
∑

be an alphabet. Given u, v ∈∑ both of length n, the hamming
distance between u and v is the number of place where u and v differ.

Note that Hamming is restricted to strings with same length.

Example 1.2.3.

.......(((((...)))))

....(((((...)))))(((
The Hamming distance between
these strings is 12

Levenshtein distance

The Levenshtein distance was introduced in 1966 by Vladimir Levenshtein6 [21]. Like the
Hamming distance it measure the “cost” to transform one string to another but using this
set of edit operations:

Insertion of a single symbol. If a = wv, inserting the symbol x produces wxv.

Deletion of a single symbol. If a = wxv, deleting the symbol x produces wv.

Substitution of a single symbol. If a = wxv, and x 6= y changes x for y produces wyv.

And each of the operations has cost one.

Example 1.2.4.

.......(((((...)))))

....(((((...)))))

....(((((...)))))(((
1. Delete the first three ”.”
2. Insert the last three ”(”

The Levenshtein distance of the same sequences as Example 1.2.3 is 6: 3 deletions and 3
insertions.

Generally if the strings are of the same size, the Hamming distance is an upper bound on
the Levenshtein distance.

And using the tree representation.

5Richard Wesley Hamming was a mathematician born in 1915 in Chicago U.S and die in 1998 in
Monterrey U.S

6Vladimir Iosifovich Levenshtein was a Russian mathematician. He was born in 1935 in Moscow and
die in 2017 in the same city.
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Tree edit distance

Tree edit operations are defined in order to convert a labeled tree into another as shown
in the next figure (Figure 1.13)

relabel Change the label of a vertex v in T .

delete Delete a non-root node v in T with parent v′, making the children of v′ become
the children of v′. The children are inserted in the place of v as a subsequence in
the left-to-right order of the children of v′.

insert The complement of delete. Insert a node v as a child of v′ in T making v the
parent of a consecutive subsequence of the children of v′.

Now, let T1 and T2 be labeled ordered trees and let DT (T1, T2) be the tree edit distance.
Define an edit script F = (f0, ..., fn) as a sequence of edit operations turning T1 into T2.
Now each edit operation has an assigned cost and the cost of F , is defined as the sum of

the costs of each operation fi, meaning cost(F ) =
n∑
i=0

fi. At the end

DT (T1, T2) = min {cost(F ) | F is a edit script from T1 to T2}

a

e d

b c

delete e

a

dcb

g

dcb

relabel a to g

a

b f

dc

insert f

Figure 1.13: An example of tree edit operations
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Methods and Implementation

2.1 Data and clustering

We work with the set of microRNA (miRNA) recovered from the miRbase[13]. These
sequences are about 28645 between 39 and 2354 base length, then the data is filtered to
select miRNA of length 110, giving a total of 775 sequences.

Afterwards, the function RNAfold from the ViennaRNA Package [22] is used to compute
the minimum free secondary structure for each of the sequences. Let S be the set of all
these structures, then, based on the folding structures, four distances are calculated: Tree
edit distance and base pair (BP) distance using the function RNAdistance again from the
ViennaRNA Package and the Hamming and the Levenshtein distance calculated from its
bracket representation. Each of the distances creates a matrix N where N [i, j] = d(i, j), i
is the i− th structure and d(i, j) is the distance between i and j. Clearly d(i, j)=0 if and
only if i and j are the same structure.

2.1.1 Clustering methods

We call ”Own method” the work develop here to cluster the set S. Also, in the interest
of compare the Own method, other methods of clustering are presented.

Own method

We use for the topological analysis the Statistical Tools for Topological Data Analysis
(TDA) package implemented in R [10]. The function RipsDiag from TDA computes for
the matrix distance N the corresponding Rips filtration and the corresponding persistence
homology of S. Note that the output obtained relies completely on the chosen distance.

Using that for a simplicial complex K, each coset of H0(K) represents exactly one con-
nected component of K (Theorem 1.1.13), each class can be seen as a cluster. If K =
VR(S, r), the clusters in K are the clusters formed at the moment r. We highlight that the
clusters are not explicit from the output of ripsDiag, but in particular gives the following
information for each 0-class [z]:

• The birth moment and the death moment of [z].
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• The annihilator edge of [z] that is added precisely in the death moment. The edge
joins the representative of [z] with the representative of the class [z′] that merges
with [z].

Observe that at r = 0, i and j belongs to the same homology class if and only if d(i, j) = 0.
In the output of ripsDiag those structures were taken as an only point. Thus every 0-class
is born at the moment 0. Using the above information, a script in R is implemented to
find the clusters for a given r, following the algorithm defined next:

Data: - S the set of secondary structures
- death a list storing the moments of death
Result: C list of 0 classes

foreach i in S do
C[i] = {i}
foreach j ≤ i in S do

if d(i, j) = 0 then
C[j] = C[j] ∪ C[i]
C[i] = {}
break

end

end

end
foreach r′ ≤ r in death do

foreach annihilator edge (e1, e2) in moment r′ do
C[e2] = C[e1] ∪ C[e2] C[e1] = {}

end

end

Finally, as for each r there is a different clustering we want the best one. The clusterings
that have too many clusters or few clusters are discarded. The remaining clusterings are
evaluated using the criteria shown in subsection(2.2.1). For this method the best clustering
must have a non negative Average Silhouette Width and the best Dunn index uses the
diameter of a cluster the complete distance. This last choice of diameter is going to be
well explained in the chapter of Discussion.

Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

Attributed to Sokal7 and Michener8 [31] is an agglomerative hierarchical clustering method.

7Robert Reuven Sokal was an Austrian biostatistician and entomologist born in Vienna in 1926 and die
in Stony Brook U.S

8Charles Duncan Michener was an US entomologist born in Pasadena in 1918 and die in Lawrence in
2015
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2.2. VALIDATION

In this method, the distance between any two clusters C and D with sizes |C| and |D| is
defined as the average distance between the elements in C and D:

d(C,D) =
1

|C| · |D|
∑
i∈C

∑
j∈D

d(i, j)

And works as follows:

1. Each cluster is made with structures whose distances between each other is 0.

2. Calculate D = {d(C,D) | C,D clusters }.
3. Take C ′ = C0 ∪D0 as the new cluster if d(C0, D0) = minD and go back to step 2.

4. Finish if there is just one cluster.

As the “Own method” each step creates a different form of clustering S. Thus, the best
clustering is chosen in the same way as before but the Dunn index uses the average dis-
tance as the form to calculate the diameter of a cluster.

To cluster S using the UPGMA method is used the function hclust implemented in R.[27]

Partitioning Around Medoids (PAM)

In 1987 Kaufman and Rousseeuw9 [20] introduced this centroid-based clustering.
PAM uses a greedy search , might be not optimal but it is faster and works as follows:

1. Select k of the structures as the medoids. It may be chosen as the most central
elements.

2. Associate each structure to the closest medoid. Calculate the cost of this clustering
as the sum of the distances between each structure and its medoid.

3. For each medoid m and for each non medoid n, make n the new medoid and recom-
pute the cost , if the cost increases undo the swap.

4. Continue until there are not more possible reductions.

It is clear that choice of k is fundamental to get the best clustering. In particular, k can
be computed for a range of numbers and choose the clustering with the best silhouette
average width; defined in the next section (2.2.1). The function pamk implemented in the
package fpc in R [16] is used to applied PAM method on S.

2.2 Validation

As for each ratio of the filtration there are different clusters it is important to choose the
best clustering. Assume S have been clustered into k clusters with k > 1, avoiding trivial
clusterings. We use two methods for internal cluster validation: the Average Silhouette
Width (ASW) and the Dunn Index (DI) in order to choose the best k’s in each case.

9Peter J. Rousseeuw is a Belgian statistician born in Wilrijk, Belgium in 1956
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2.2.1 Internal cluster validation

When a clustering result is evaluated based on the data that was clustered itself, is called
internal evaluation. Are presented two criteria:

Average silhouette width

This method for interpretation and validation of cluster analysis was proposed by Peter
Rousseeuw10 in 1986 [29]. Let i be a structure of S and let C be the cluster such that
i ∈ C. Define:

a(i) =
1

|C| − 1

∑
j∈C
i 6=j

d(i, j)

Simply, a(i) is the average distance between si and the other structures in C. Thus, a(i)
can be interpreted as a measure of how well i is assigned to C; the smaller the value, the
better its assignment.

Then, for any cluster D distinct of C define:

d(i,D) =
1

|D|
∑
j∈D

d(i, j)

And take

b(i) = min{d(i,D) | D cluster}

The cluster D that attaches the minimum is said to be the neighbor cluster of i because
it is the next best cluster for i.

With these elements the silhouette index for i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)} =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

If s(i) is close to 1, then a(i) << b(i). A small a(i) means it is well matched and a large
b(i) implies i is badly matched to its neighbor cluster. Thus, an s(i) close to 1 means that
the structure is appropriately clustered. In the same way, s(i) is close to −1 if its neighbor
cluster represents a better matching. A s(i) near zero means that i is on the border of
two natural clusters.

Finally, the average silhouette width is define as the average of s(i) for all structures of S.
The ASW might be used to select an appropriate number of clusters trying to maximize
its value.

10Peter Rousseeuw is a statician born in 1956 in Wilrijk, Belgium
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2.2. VALIDATION

Dunn Index

The Dunn index was defined by J. C. Dunn in 1973 [6] . Let Ci and Cj be clusters of S
and define the inter-cluster distance between Ci and Cj , in particular:

• d(Ci, Cj) = min{d(s, t) | s ∈ Ci, t ∈ Cj}, is the distance between the closest two
points. It is called the single distance.

• d(Ci, Cj) =
1

|Ci||Cj |
∑

s∈Ci,t∈Cj

d(s, t), is the average distance between the elements of

Ci and Cj . It is called the average distance.

In the same way, the diameter of Ci is defined, noted as δi.

• δi = max{d(s, t) | s, t ∈ Ci}, is the distance between the farthest two points.

• δi =

(|Ci|
2

)−1 ∑
s,t∈Ci

d(s, t), is the average distance between the elements of Ci.

With the above notation, if there are k clusters, then the Dunn Index (DI) is defined as:

DI(S) =
min1≤i≤j≤k d(Ci, Cj)

max1≤i≤k δi

2.2.2 External cluster validation

In external evaluation, clustering results are evaluated based on other clustering that is
assumed to be the gold standard. To do that let C and D two forms of clustering S and
partition the set of pairs (i, j) of S:

• A={(i, j) | i and j are in the same cluster in C and in the same cluster in D}.
• B={(i, j) | i and j are in different clusters in C and in different clusters in D}.
• C={(i, j) | i and j are in the same cluster in C and in different clusters in D}.
• D={(i, j) — i and j are in different clusters in C and in the same cluster in D}.

And take

• TP(C,D) = |A| , (true positives)

• TN(C,D) = |B| , (true negatives)

• FP(C,D) = |C| , (false positives)

• FN(C,D) = |A| , (false negatives)

If the context is clear TP(C,D) is simply TP, analogous with TN, FP and FN.

Intuitively, TP + TN can be considered as the number of agreements between C and D
meanwhile FP + FN as the number of disagreements, note that the definition of TP and
TN is symmetric respect to C and D but not for FP and FN; this is particular useful when
D is considered a gold standard.

Using the above classification of the pairs of S we define two criteria:
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Jaccard Index

Paul Jaccard11 developed the Jaccard index of similarity in 1901 [19]. The Jaccard index
J of C and D is defined as:

J(C,D) =
TP

TP + FP + FN

Rand Index

The Rand Index was introduced by William Rand in 1971 [28] as a criteria of evaluation
of clustering methods. The Rand index of C and D is defined as:

Rand(C,D) =
TP + TN

TP + TN + FP + FN

2.2.3 Random sets

To find out how sensitive is the algorithm to calculate the properties of persistent homol-
ogy, we want to know how it behaves with a random set of structures. The worst behavior
with the random set , the better the method is.

A set M is created from S mutating each sequence in S. The mutation is made choosing
5 random positions between the positions 21 to 40 and replacing the bases in the posi-
tions with random bases. In this way, each structure i in S has it corresponding mutated
structure i in M , thus, |M | = |S|. Afterwards, the process of clustering we made for the
original sequences is applied again on M in order to cluster this new set and proceed to
compare with the clusters in S for each distance.

M doesn’t seem as a random set since M clearly depends on S, but an ”aggressive”
random set of structure might not have biological sense since they are supposed to be
RNA molecules.

False positive rate

To compare M and S is going to be used a variation of the false positive rate.

Take some clustering for M and S. Each pair of elements (i, j) is classified in one of this
groups:

TP: The pair is in the same cluster in S and different clusters in M .

TN: The pair is in different clusters in S and same cluster in M .

FP: The pair is in the same cluster in S and same clusters in M .

FN: The pair is in different clusters in S and different clusters in M .

11Paul Jaccard was a professor of botany and plant physiology. He was born in Sainte-Croix in 1868
and die in Zurich in 1944

30



2.2. VALIDATION

Intuitively a pair (i, j) is consider false if it coincides with the original set, meaning the
method find the “right” clustering despite the randomization and it is true if it differs.
In addition, is considered positive if i and j are in the same cluster in S and negative if not.

The false positive rate (FPR) is defined by:

FPR =
FP

FP + TP + TN

It is taken in this way because in FP, TP, TN, each counted pair is either in S or M in
the same cluster, meaning the method took a decision of clustering . With a better look in
the partition made in subsection 2.2.2, FPR coincides with the Jaccard index, swapping
the false ones with the positive ones.
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Results

Previously we mentioned the initial data set is the set of 775 miRNA’s of length 110 .
After we computed the set S of foldings and we calculated each distance we found that
for 223 sequences there is at least one distinct whose distance form the first one is 0,
meaning they have the same secondary structure. The larger set of sequences with the
same structure is 16. The set S has 606 structures, confirmed by the number of connected
components in the first step of the Rips filtration for each distance.

3.1 Hamming Distance

3.1.1 Clustering

The non zero distances between the structures in S varies between 2 and 94. The figure
3.14 shows the barcode corresponding to 0-homology of S.

Ratios

H0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

606 574 553 538 512 446 286 143 78 44 26 11 6 2 1 1
Number of

clusters

Figure 3.14: Barcode diagram of the metric space S using the hamming distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters
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3.1. HAMMING DISTANCE

We call a ratio representative if is 0 or is the death point for some 0-class, subsequently
the clustering for each representative ratio is computed. The total of representative ratios
otained is 41 and the first ratio when it starts to be an only cluster is 53.

Some of the clusterings are illustrated in the figure 3.15. Each color represents a different
cluster and the difference between where it ends and where it starts is the percentage of
elements that are in the cluster.
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Figure 3.15: Percentage of elements for each cluster for some representative ratios. The
number of clusters for each ratio are in the right side of the graphic.

3.1.2 Validation

Following the indications in Methods we choose the best clustering and its information is
described in the table 3.1:

ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

22 380 27.35% 0.1346 0.2191 0.2116

Table 3.1: Information of best clustering. a means average, c means complete, s means
single, and a/c means the Dunn Index is calculated using average distance as inter-cluster
distance and complete distance as diameter.

It is interesting to point here that this cluster is in the 9th place respect to the Dunn index
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but is the first with non-negative ASW.

On the other side, we computed the reference clusterings using the methods UPGMA and
PAM. Some of the clusterings of the method UPGMA are illustrated in Figure 3.16. The
comparison between methods is shown graphical (Figure 3.17)and numerical (Table 3.2).

Percentage of elements of each cluster using UPGMA for the Hamming distance
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Figure 3.16: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.
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Figure 3.17: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.

34



3.1. HAMMING DISTANCE

TP TN FN FP Rand Index Jaccard Index

UPGMA 13563 238609 38122 9631 0.841 0.221

PAM 15801 115373 161358 7393 0.437 0.086

Table 3.2: Comparison between best clustering from Own method against best clusterings
from UPGMA and PAM

On the other hand, the set of mutants M is computed. The distances between the struc-
tures in M varies between 2 and 110. The figure 3.18 shows the barcode corresponding to
0-homology of M .

Ratios

H0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

775 769 724 662 622 591 522 373 220 137 86 29 5 1 1 1Number of
clusters

Figure 3.18: Barcode diagram of the metric space M using the hamming distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters

The total of representative ratios is 44 and the first ratio when there is an only cluster is 52.

As the best clustering has a total of 380 clusters, from the mutated sequences we chose
the clusterings with almost similar number of clusters and for each is calculated the false
positive rate in order to pick the one with the worst FPR (Table 3.3).

Different mutant clusterings
FPR 0.061 0.061 0.232 0.235 0.205 0.197 0.153 0.146 0.123 0.114

Table 3.3: FPR between the best clustering of S and some clusterings with almost similar
number of clusters of M

Based on Table 3.3 we chose the fourth clustering of that list; we call this clustering the
analogous clustering. The information of both is shown in the Table 3.4 :
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ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

27 453 27.87 % −0.0087 0.2687 0.2687

Table 3.4: Information of analogous clusterings.

And the best clustering is compared with the analogous clustering. The information is
described in Table 3.5.

FP FN TN TP FPR

8895 262076 14299 14655 0.235

Table 3.5: Comparison between best clustering and analogous clustering.

3.2 Levenshtein Distance

3.2.1 Clustering

The non zero distances between the structures in S varies between 2 and 82. The figure
3.19 shows the barcode corresponding to 0-homology of S.

Ratios

H0

0 4 8 12 16 20 24 28 32 36 40 44 48

606 574 549 523 432 222 97 43 17 5 2 1 1
Number of

clusters

Figure 3.19: Barcode diagram of the metric space S using the levenshtein distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters

Subsequently the clustering for each representative ratio was computed. The total of rep-
resentative ratios is 39 and the first ratio when it starts to have an only cluster is 43.
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3.2. LEVENSHTEIN DISTANCE

Some of the clusterings are illustrated in the figure 3.20.
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Figure 3.20: Percentage of elements for each cluster for some representative ratios. The
number of clusters for each ratio are in the right side of the graphic.

Percentage of elements of each cluster using UPGMA for the Levenshtein distance
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Figure 3.21: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.
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3.2.2 Validation

We chose the best clustering for this distance and its information is described in table 3.6:

ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

17 403 19.35% 0.1603 0.2339 0.2298

Table 3.6: Information of best clustering. a means average, c means complete, s means
single, and a/c means the Dunn Index is calculated using average distance as inter-cluster
distance and complete distance as diameter

On the other side we computed the reference clusterings using the methods UPGMA and
PAM. As before some of the clusterings of UPGMA are shown in Figure 3.21 . Their
comparison is shown graphical (Figure 3.22)and numerical (Table 3.7 ) below.
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Figure 3.22: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.

TP TN FN FP Rand Index Jaccard Index

UPGMA 8631 222177 65568 3549 0.77 0.111

PAM 1668 284242 3503 10512 0.953 0.106

Table 3.7: Comparison between best clustering from Own method against best cluster-
ings from UPGMA and PAM. The order of the comparisons are (UPGMA,Own) and
(PAM,Own)

On the other hand, the set of mutants M was computed. The distances between the struc-
tures in M varies between 2 and 79. The figure 3.23 shows the barcode corresponding to
0-homology of M .

The total of representative ratios is 39 and the first ratio when it is an only cluster is 39.
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3.2. LEVENSHTEIN DISTANCE

Ratios

H0

0 4 8 12 16 20 24 28 32 36 40 44

775 769 711 646 585 470 252 141 54 9 1 1Number of
clusters

Figure 3.23: Barcode diagram of the metric space M using the levenshtein distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters

Since the best clustering has a total of 403 clusters from the mutated sequences we chose
the clusterings with almost similar number of clusters and for each is calculated the false
positive rate in order to pick the one with the worst FPR (Table 3.8).

Different mutant clusterings
FPR 0.056 0.062 0.11 0.171 0.169 0.124 0.1 0.083 0.069 0.062

Table 3.8: FPR between the best clustering of S and some clusterings with almost similar
number of clusters of M

Based on Table 3.8 the fourth clustering of that list was chosen; it is called the analogous
clustering. Its information is shown in the Table 3.9.

ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

19 470 30.32 % −0.0484 0.2083 0.1919

Table 3.9: Information of analogous and best mutant clustering. s means single, c means
complete, and s/c means the Dunn Index is calculated using average distance as inter-
cluster distance and complete distance as diameter

Finally, the best clustering was compared with the analogous mutant clustering as shown
in Table 3.10.
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FP FN TN TP FPR

2642 284494 9538 3251 0.169

Table 3.10: Comparison between best clustering and analogous clustering.

3.3 Base pair Distance

3.3.1 Clustering

The non zero distances between the structures in S varies between 1 and 97. The figure
3.24 shows the barcode corresponding to 0-homology of S.

Ratios

H0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

606 571 547 525 511 491 454 406 339 261 190 111 63 33 10 3 1 1
Number of

clusters

Figure 3.24: Barcode diagram of the metric space S using the base pair distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters

Afterwards we computed the clustering for each representative ratio. The total of repre-
sentative ratios is 62 and from the ratio 63 the clusterings have an only cluster.

Some of the clusterings are illustrated in the figure 3.25.

3.3.2 Validation

Next, the best clustering was chosen. The information of the clustering is found below
(Table 3.11):
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3.3. BASE PAIR DISTANCE
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Figure 3.25: Percentage of elements for each cluster for some representative ratios. The
number of clusters for each ratio are in the right side of the graphic.
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Figure 3.26: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.
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ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

38 225 10.19% 0.2002 0.1612 0.1612

Table 3.11: Information of best clustering. a means average, c means complete, s means
single, and s/c means the Dunn Index is calculated using average distance as inter-cluster
distance and complete distance as diameter.

On the other hand we computed the reference clusterings using the methods UPGMA and
PAM. Some of the clusterings of the method UPGMA are illustrated in Figure 3.26. The
comparison of the methods is shown in a graphical (Figure 3.27) and numerical (Table
3.12) way.
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Figure 3.27: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.

TP TN FN FP Rand Index Jaccard Index

UPGMA 7135 286551 4592 1647 0.979 0.533

PAM 6878 247594 43549 1904 0.848 0.131

Table 3.12: Comparison between best clustering from Own method against best clusterings
from UPGMA and PAM

On the other side, we computed the set of mutants M . The distances between the struc-
tures in M varies between 1 and 93. The figure 3.28 shows the barcode corresponding to
0-homology of M .

The total of representative ratios was 60 and the first ratio when there is an only cluster
is 65.

After this, from the mutated sequences were chosen the clusterings with a number of
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Ratios
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Figure 3.28: Barcode diagram of the metric space M with the base pair distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters.

clusters close to 225 and for each is calculated the false positive rate in order to pick the
one with the worst FPR (Table 3.13).

Different mutant clusterings
FPR 0.295 0.308 0.324 0.277 0.181 0.159 0.124 0.069 0.049 0.044

Table 3.13: FPR between the best clustering of S and some clusterings with almost similar
number of clusters of M

Using the information of the Table 3.13 we chose the third clustering of the list above. We
call this clustering the analogous clustering. The information of the clustering is shown in
the Table 3.14:

ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

38 337 13.41 % 0.1038 0.118 0.118

Table 3.14: Information of analogous clustering.

And the best clustering was compared with the analogous clustering in and numerical way
(Table 3.15).

FP FN TN TP FPR

2642 284494 9538 3251 0.324

Table 3.15: Comparison between best clustering and analogous clustering.
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3.4 Tree edit distance

3.4.1 Clustering

The non zero tree edit distances between the structures in S varies between 2 and 148.
The figure 3.29 shows the barcode corresponding to 0-homology of S.

Ratios

H0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

606 586 564 552 532 467 321 174 106 70 35 24 15 9 7 3 2 2 1 1
Number of

clusters

Figure 3.29: Barcode diagram of the metric space S using the tree edit distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters

Then, the clustering for each representative ratio is computed. The total of representative
ratios is 31 and from 70 the clustering has an only cluster.

Some of the clusterings are illustrated in the figure 3.30.

3.4.2 Validation

Afterwards, as with the other distances, we chose the best clustering. The information of
the clustering is found below (Table 3.16):

ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

20 467 6.06% 0.2737 0.2372 0.2372

Table 3.16: Information of best clustering. a means average, c means complete, s means
single, and s/c means the Dunn Index is calculated using average distance as inter-cluster
distance and complete distance as diameter.

On the other hand the best clusterings were computed using the methods UPGMA and
PAM. The method UPGMA is illustrated in Figure 3.31 Its comparison is shown in a
graphical (Figure 3.32) and numerical (Table 3.17) way.
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Figure 3.30: Percentage of elements for each cluster for some representative ratios. The
number of clusters for each ratio are in the right side of the graphic.

Percentage of elements of each cluster using UPGMA for the Tree edit distance
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Figure 3.31: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.
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Figure 3.32: Percentage of elements for each cluster for Own, UPGMA and PAM
method.The number of clusters for each method are in the right side of the graphic.

TP TN FN FP Rand Index Jaccard Index

UPGMA 2170 206773 90959 23 0.697 0.023

PAM 2014 145007 152725 179 0.49 0.013

Table 3.17: Comparison between best clustering from Own method against best clusterings
from UPGMA and PAM

On the other side, the set of mutants M was computed. The distances between the struc-
tures in M varies between 4 and 158. The figure 3.33 shows the 0-classes of M using the
barcode representation.

The total of representative ratios is 31 and the ratio when starts to have an only cluster
is 66.

Afterwards,from the mutated sequences we chose the clusterings with a number of clusters
close to 467 and for each is calculated the false positive rate in order to pick the one with
the worst FPR (Table 3.18).

Different mutant clusterings
0.14 0.187 0.2 0.24 0.248 0.143 0.07 0.031 0.022 0.016

Table 3.18: FPR between the best clustering of S and some clusterings with almost similar
number of clusters of M
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Ratios
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Figure 3.33: Barcode diagram of the metric space M using the tree edit distance. On
bottom are the ratios corresponding to the Rips filtration and on top their corresponding
β0 that corresponds to the number of clusters.

Using the information of the Table 3.18 the fifth clustering of that list was chosen. This
clustering is called the analogous clustering. The information of the clustering is shown
below in the Table 3.19

ratio # of clusters Per. of greater cluster ASW DI a/c DI s/c

22 584 3.87 % 0.0897 0.2524 0.2222

Table 3.19: Information of analogous clustering. a means average, c means complete, and
a/c means the Dunn Index is calculated using average distance as inter-cluster distance
and complete distance as diameter

Finally, the best clustering was compared with the analogous clustering. See the Table
3.20).

FP FN TN TP FPR

624 297412 1569 320 0.248

Table 3.20: Comparison between best clustering and analogous clustering.
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Is observed that even though the original set of data has 775 sequences, for all distances,
the maximum number of clusters is 606. This happens since calculating secondary struc-
tures is not an injective function, it is not true that each folding comes from a unique
sequence, even more there is an exponential number of them [40] .

From now are discussed the results obtained for the hamming , levenshtein and tree
edit distances since their results are similar.

Observing the number of clusters as a function of the ratio (Figures 3.14, 3.19 and 3.29)
, clearly its slope is non positive as it is a decreasing function. In the extremes the slope
can be greater than −4 but decreases in a vertiginous way , reaching an average slope
of −30 in the middle part of the total range. At the same time, the diminution of the
number of clusters is accompanied by the formation of a large cluster that grows bigger
as r increases as we can see in Figures 3.15, 3.20 and 3.30

Consider again the fundamentals . It is clear that an edge (i, j) belongs to VR(S, r) if
d(i, j) ≤ r, then the clusters(classes) [z] and [z′] merges at step r if i ∈ [z] and j ∈ [z].

For instance, consider the cluster C = {i1, i2, ...im} ⊂ S such that ik is a structure of
length m >> 1. Using the hamming distance might be the case that d(ij , ij+1) = 1 with
the difference in the j-position of the bracket representation for all j = 1, 2, ..., n−1 ,then,
d(i1, im) = m− 1. Thus , C is a connected component of VR(S, 1), but d(i1, im) >> 1.

We call this behavior the chaining problem: a chain of points can be extended for long
distances without regard to the overall shape of the emerging cluster, also, that is why
the complete distance is chosen to measure the diameter of a cluster in the Dunn Index,
it this way, the index penalties the cluster if it spreads out too much.

Going back to the clusterings, it can be deduced:

• The three distances reach an only cluster in the half of its maximum distance. Thus
even the most apart sequences are connected with a path of structures with distance
pair by pair less than the half of the maximum distance. At the same time, almost
all structures are connected with only the third part of the maximum distance.
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• Besides the big cluster, there is no presence of clusters that surpass the 5% of the
elements. This behavior indicated that the other clusters remains almost with the
same size as r increases. Then it is deduced there are structures that persist isolated,
meaning they are really far from each other.

• Due to chaining problem, the clusters are not well defined, that is why the ASW
and Dunn index are low.

Now, we consider the results from the comparison with the UPGMA method and PAM
method (Figures 3.17, 3.22 and 3.32). In the UPGMA method, still is present a big cluster
, but there are other clusters of medium size. Also the numbers of clusters differ: mean-
while the number of cluster in the own method is over 300, PAM may choose 2 as the best
number of clusters, UPGMA is in the middle of both.

The validation analysis described in Tables 3.2, 3.7 and 3.17 indicates that for all the
distances are a lot of true negatives (TN), this is because the large number of clusters in
the “Own method” makes difficult that two elements belong in the same set. Also, this is
the reason of the huge difference between the Rand Index and the Jaccard index, which
is really low. In general, the clusterings are not similar. In particular:

• In the hamming distance the number of false negatives is large indicating the al-
ternative methods cluster elements that “Own method” does not, but in the PAM
method is almost trivial since there are only two clusters . At the same time, FN
is not all the set, thus, the elements in the big cluster of the “Own method” are for
sure in the same cluster in PAM .

• In the levenshtein distance it is relevant the number of false positives respect to the
PAM method, this is due to the elements in the big cluster in the “Own method”
that are not in different clusters in PAM, which have a large number of clusters.

In contrast, base pair distance has a different behavior, as it presents the following
characteristics:

• The Figure 3.24 shows that the number of clusters do not decrease abruptly when
the ratio increases, its average slope is not less than −20. At the same time, there
is a large cluster that grows bigger as r increases.

• A one cluster is reached in the two third of its maximum distance, contrasting the
half part of before. At the same time, almost all structures are connected in the half
of the maximum distance.

• The main difference observed here with the other distances is that at each step there
are clusters merging that do not involve the larger cluster, thus, there exists also
clusters of middle size (Figure 3.25). Hence, the clusters are better defined and
suggests that other clusters do not remain the same, as r increases, then with this
distance there are a less number of isolated structures.
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• Even though the Dunn index and the ASW shown lower values in comparison with
other distances (Compare Table 3.11 with Tables 3.1,3.6 and 3.16), the BP distance
gives a better clustering of elements. This is because these criteria are internal,
thus, there are not a good way to compare clusterings of different distances since its
condition of maximum is local.

Now, in the UPGMA method (Figure 3.26), there is not a presence of a big cluster con-
trasting with the other distances. Also the numbers of clusters differ between the three
methods giving a larger number for the Own method, followed by UPGMA and with less
clusters the PAM method.

In the validation analysis described in Table 3.12, there is still a presence of a lot of true
negatives, that is the reason why they present a good Rand Index. Opposite to before, the
Jaccard index for the UPGMA is greater than 0.5 because the number of false negatives
is not as large as before, because it presents a greater number of true pairs. The Jaccard
index for the PAM method is still low, due to the difference of the number of clusters of
both methods.

Regarding the mutant set for all distances, is noted that the number of structures coincides
with the number of sequences, thus, after the mutation the sequences that used to have
the same structure has lost this similarity. In general, the clustering of the mutant set
behaves similar as its non mutated peer.

On the other hand, even though it has a similar behavior does not reach a similar best
clustering. This is shown in the false positive rates that are specifically 0.169, 0.235, 0.248,
0.324 .

It can be concluded that the “Own method” is sensible to the changes between structures,
even the slightly ones. Despite the clusterings are not the best, is a good way to distinguish
the differences between sets that in principle seems similar component by component.
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Conclusions

1. The Own method is not as good as other methods of clustering, since the chaining
problem makes it susceptible to form one big cluster rather than many clusters of
medium size.

2. The own method can be used to recognize general properties of the connected
components. Can identify isolated data points and data points close in a chain-
ing sense: sometimes might be useful to know if two data points are precisely joined
by a chain of data points with small distance pair by pair.

3. As the application of the Own method in different metric spaces gives different
results can be conjectured that the change depends on the metric space. Then, it
suggests that base pair distance defines a promising metric space that allows a better
clustering.

4. The Own method is sensible to changes on the data points , even the little ones.
Thus , rather than similarities , it is a good way to distinguish differences between
close data sets , for example , noisy data .
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Future Work

There are a lot of questions that arise from the results and are beyond the scope defined
for the thesis.

Some of the interrogations will remain unanswered until there is a biological analysis of
the obtained clusterings, for example:

• The sequences which have exactly the same secondary structure question if they
are the same RNA but in MiRBase are annotated with different names or if they
are different, question whether belong to the same specie or if they have the same
function.

• The RNA’s that represents isolated point question if they are the same for all the
distances and the reason why they are far from the rest of the sequences.

• If the chaining condition may be an useful information for this set of miRNA.

And other questions depends on a further work , like:

• Since only the 0-homology from the Rips filtration was used in this work, question if
using greater dimensions for the topological data analysis gives more and meaningful
information about the data set.

• Since a particular set of RNA’s were chosen and particular distances, is worth to
question if with other distances or other sets the results are improved.
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